Top 10 Billboord Prediction Analysis

Anirudh Madhavon

Jocelyn Josso
Michael Opiela
Justin Word
Mia Nouyen

Challenge Statement

Our challenge: How can we reveal what tracks are most likely to be hits before we commit resources towards promoting them?

By remedying this problem, we can:

- Look at possible long-term and short-term investment for new artists
- Look at average and variance of music sales/popularity of songs and compare
- Open up new product development opportunities

Marketing Opportunity

We wont to know which tracks will "blow up" so we con put our marketing resources behind the right ones and moximize our return. By getting a cleorer understonding of possible costs \& profits for labels looking to release new records, we can help them allocate their resources in the most profitmoximizing way given the information we have.

Dataset

Source: Koggle

Contains more than $\mathbf{3 0}$ columns with different song characteristics, such as tempo, estimatekey, timbre, and timesignature, including artist|D and songID

We used "Top 10" binary column to showcase predicted popullarity of each song

Key is to determine probability of songs success (more dififficulit), not probabilility of fiailure (easier))

Cleon Dato

Dato was surprisingly completely clean, there were no NA volues for ony of the variables

year	$\begin{aligned} & \text { songtitle } \\ & \text { Length: } 7574 \end{aligned}$	artistname songID			timbre_3_min	timbre_3_max	timbre_4_min	timbre_4_max
Min. :1990		Length: 7574	Length:	$: 7574$	Min. :-495.36	Min. $\quad 12.85$	Min. :-207.07	Min. : -0.651
1st Qu.:1997 C	Class :character	Class : character	Class :charact		1st Qu.:-226.87	1st Qu.:127.14	1st Qu.: -77.69	1st Qu.: 83.966
Median :2002	ode :character	Mode : c	Mode	character	Median :-170.61	Median :189.50	Median : -63.83	Median :107.422
Mean :2ea					Mean :-186.11	Mean :211.81	Mean : -65.28	Mean :108.227
3rd Qu.:2006					3rd Qu. :-131.56	3rd Qu.:290.72	3rd Qu.: -51.34	3rd Qu.:130.286
$\text { Max. }: 2010$ artistID	timesignature	timesignature_confidence		loudness	Max. : -21.55 timbre 5 min	Max. :499.62 timbre_5 max	Max. : 51.43 timbre 6 min	Max. :257.801 timbre_6_max
Length: 7574	Min. : 0.000	Min. : 0.000θ		Min. :-42.451	Min. ${ }^{\text {: }}$-262.48	Min. \quad :-22.41	Min. \quad :-152.170	Min. $\quad 12.70$
Class : character	r 1st Qu.:4.000	1st Qu.:0.8193		1st Qu.:-10.847	1st Qu. :-113.58	1st Qu.: 84.64	1st Qu.: -94.792	1st Qu.: 59.04
Mode : characte	r Median :4.000	Median :0.9790		Median : -7.649	Median : -95.47	Median : 119.90	Median : -80.418	Median : 70.47
	Mean :3.894	Mean : 0.8533		Mean : -8.817	Mean :-104.00	Mean :127.04	Mean : -80.944	Mean : 72.17
	3rd Qu.:4.000	3rd Qu.:1.0000		3rd Qu.: -5.640	3rd Qu.: -81.02	3rd Qu.:162.34	3rd Qu.: -66.521	3rd Qu.: 83.19
tempo	$\text { Max. } \quad: 7.000$	key key_confidence			Max. : -42.17	Max. : 350.94	Max. : 4.503	Max. : 208.39
Min. ${ }^{\text {eme }}$: 0.00	Tempo_contidence				timbre_7_min	timbre_7_max	timbre_8_min	timbre_8_max
1st Qu.: 88.86	1st Qu. : 0.3728	1st Qu.: 2.800	1st Qu.: 2.080 1st Qu.:0.2840		Min. :-214.791	Min. : 15.70	Min. :-158.756	Min. :-25.95
Median :103.27	Median :0.7015	Median : 6.000 Median : 0.4515			1st Qu.:-101.171	1st Qu.: 76.50	1st Qu.: -73.051	1st Qu.: 40.58
Mean : 107.35	Mean :0.6229				Median : -81.797	Median : 94.63	Median : -62.661	Median : 49.22
3rd Qu.:124.80	3rd Qu.:0.8920	3rd qu.: 9.080 3rd qu.:e		rd Qu. :0.6460	Mean : -84.313	Mean : 95.65	Mean : -63.704	Mean : 50.06
Max. :244.31	Max. :1.0000		Max. :1.0000		3rd Qu.: -64.301	3rd Qu.:112.71	3rd Qu.: -52.983	3rd Qu.: 58.46
energy	pitch		timbre_e_max		$\begin{aligned} & \text { Max. : } \quad 5.153 \\ & \text { timbre_9_min } \end{aligned}$	Max. :214.82 timbre_9_max	Max. : -2.382	Max. : 144.99 timbre_10_max
Min. : 0.00002	Min. : 0.00000	timbre_0_min ${ }_{\text {Min. }} \quad$ O.000	Min.	:12.58			timbre_10_min	
1st Qu. :0.50014	1st Qu. : 0.00300	1st Qu.: 0.0ө日	1 st Qu.	:53.12	Min. :-149.51	Min. : 8.415	Min. :-208.82	Min. : -6.359
Median :0.71816	Median :0.00700	Median : 0.027	Median	:55.53	1st Qu.: -70.28	1st Qu.: 53.037	1st Qu.:-105.13	1st Qu.: 39.196
Mean :0.67547	Mean : 0.01082	Mean : 4.123	Mean	:54.46	Median : -58.65	Median : 65.935	Median : -83.07	Median : 50.895
3rd Qu.: 0.88740	3rd Qu.: 0.01408	3rd Qu.: 2.772	3 rd Qu.	:57.08	Mean : -59.52	Mean : 68.028	Mean : -87.34	Mean : 55.521
$\text { Max. } \quad: 0.99849$ timbre_1_min	Max. :0.54100 timbre 1 max	Max. : 48.353 timbre_2 min	Max. timber	$: 64.01$	3rd Qu. : -47.70	3rd Qu. : 81.267	3rd Qu.: -64.52	3rd Qu.: 66.593
Min. \quad :-333.72	Min. \quad :-74.37	Min. \quad :-324.86	Min.	- -0.832	Max. : 1.14	Max. $: 161.518$	Max. : -10.64	Max. : 192.417
1st Qu. :-160.12	1st Qu.:171.13	1st Qu. :-167.64	1st Qu.	:100.519	timbre_11_min	timbre_11_max	Top10	
Median :-107.75	Median :194.48	Median :-136.60	Median	:129.988	Min. : -145.599	Min. : 7.20	Min. : 0.0000	
Mean :-110.79	Mean :212.34	Mean :-136.89	Mean	:136.673	1st Qu.: -58.058	1st Qu.: 38.98	1st Qu.:0.0000	
3rd Qu.: -59.71	3rd Qu. :239.24	3rd Qu. :-106.51	3rd Qu.	:166.121	Median : -50.892	Median : 46.44	Median :0.0000	
Max. : 123.73	Max. :549.97	Max. : 34.57	Max.	:397.095	Mean : - 50.868	Mean : 47.49	Mean : 0.1477	

First Approach - Cost-Based

First, we evalluated that the data is unballanced

- 64455 ($\sim 83 \%$ of the dataset) being songs that doesn't malke it to the top ill billluoard
- 111119 ($\sim 17 \%$ of the dataset) being songs that beconne a Top 10 hiit

```
table(songs_data$Top10)
# This is not a 'balanced' dataset - the probability of the l event (song
# charting is significantly low in the dataset)

\section*{First Approach - Cost-Based}

To provide more accurate modell buillding and minininnizing discrepancies:
- Split data iinta training and test data (70\% and 30\% roughlily)
- Eliminating 5 columns that have qualitative data
- Running a regression and getting rid of variables that are statistically insignifificant

\section*{First Approach - Cost-Based}
model_glm <- glm(Top10 ~ timesignature_confidence + loudness + tempo_confidence + energy + pitch + timbre_0_min + timbre_0_max + timbre_1_min + timbre_3_max + timbre_4_min + timbre_4_max + timbre_5_min + timbre_6_min + timbre_6_max +
timbre_10_max + timbre_11_max + timbre_11_min, data = songs_train2, family = binomial(logit)) summary_glm <- summary(model_glm)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{1.} & \multicolumn{2}{|l|}{A matrix: \(34 \times 4\) of type dbl} & \multirow[b]{2}{*}{z value} & \multirow[b]{2}{*}{\(\operatorname{Pr}(>|z|)\)} \\
\hline & Estimate & Std. Error & & \\
\hline (Intercept) & \(1.634801 \mathrm{e}+01\) & 2.1261222004 & 7.68912063 & 1.481497e-14 \\
\hline timesignature & \(8.910904 \mathrm{e}-02\) & 0.1006059061 & 0.88572371 & 3.757664e-01 \\
\hline timesignature_confidence & 7.158259e-01 & 0.2194244529 & 3.26228843 & \(1.105166 \mathrm{e}-03\) \\
\hline loudness & \(3.062692 \mathrm{e}-01\) & 0.0345066771 & 8.87565040 & 6.952591e-19 \\
\hline tempo & -6.239175e-04 & 0.0019405466 & -0.32151639 & 7.478191e-01 \\
\hline tempo_confidence & \(5.824733 \mathrm{e}-01\) & 0.1644896251 & 3.54109430 & 3.984711e-04 \\
\hline key & \(1.798239 \mathrm{e}-02\) & 0.0120249120 & 1.49542764 & 1.348029e-01 \\
\hline key_confidence & \(3.034189 \mathrm{e}-01\) & 0.1624953328 & 1.86724694 & 6.186711e-02 \\
\hline energy & -9.635887e-01 & 0.3634033427 & -2.65156812 & 8.011895e-03 \\
\hline pitch & -4.408435e +01 & 7.7230397837 & -5.70816100 & 1.142034e-08 \\
\hline timbre_0_min & \(2.541313 \mathrm{e}-02\) & 0.0049090528 & 5.17678937 & 2.257368e-07 \\
\hline
\end{tabular}

Half of the variables are eliminated
The remaining explanatory variables used on the logit regression model (in R ) are:
- Time signature
- Loudness
- Tempo
- Energy
- Pitch
- Timbre min ( \(0,1,4,4,5,6,111)\)
- Timbre max (0, 3, 4, 6, 10, 111)

\section*{Results - Cost-Based}

Not great.o. The accuracy off predicting filops are VERYY highn, but what we actually care about = the hits = is llow
- 98\% accuracy on the fillops predictions
- Only \(19 \%\) accuracy on hilts predictions

> What the model predicts
> Actual value FALSE TRUE
> \(\begin{array}{lll}0 & 4363 & 89\end{array}\)
> 1638153
> 0.980008984725966
> 0.193426042983565

\section*{Problems with First Approoch}

Since the dataset is imbolonce to begin with, the naturolly ossume cutoff point of 0.5 backfired because we ore weighing both outcomes equally.

Because of that, the model leons towords classifying the songs as flops since that is the mojority of the data presented in the set.

However, we core about the hits infinitely MORE! Let's see if we con remedy this issue

\section*{First Approach - Cost-Based (modified)}

Knowing the issue, we decided to find the optimized cutoff point:
```

Penollizing Fallse $\mathbb{N e g a t i v e ~ a ~ l l o t ~}$ more and Fallse Positive a llot lless

```

Fallse \(\mathbb{N e g a t i v e ~ 6 x ~ a s ~ m u c h ~ a s ~}\) Follse Positive

Using \(\mathbb{R}\), we deffined a cost metric, an index sequence, and utillizizing coding power, sorted through every probabiliity (by 0.011 thinresholld) to find a place w/here the cost is miniinnized

\section*{How the Magic Happens - Cost-Based}
```

cost_function = function(what_happened , model_probability , cutoff_probability)

```


```

 c1 = (what_happened == 1) & (model_probability < cutoff_probability) # Counting up False Negatives
 c0 = (what_happened == 0) & (model_probability > cutoff_probability) # Counting up False Positives
 # Define a cost metric using weighted averages
 cost = mean(weight_1 * c1 + weight_2 * c0)
 return(cost)
 }

```
```


Going through every probability to find the best cut - off

p.seq = seq(from = 0.01, to = 1,by = 0.01)

```
```


Looping through in order to find the p - cut that can lower the cost function

to the maximum extent possible

cost = rep(0,length(p.seq))
for(i in 1 : length(p.seq)){

```

```

}

```

\section*{Results - Cost-Based (modified)}

\section*{The miniminized cutoffif point is 0.14}


\section*{Results Improved signifificantl|y!}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Cutoff probability} & \multicolumn{2}{|l|}{0.14} \\
\hline & \multicolumn{2}{|c|}{CONFUSION MATRIX} \\
\hline & \multicolumn{2}{|c|}{Predicted} \\
\hline \multirow[t]{7}{*}{Actual 0} & 0 & 1 \\
\hline & 3147 & 1305 \\
\hline & 189 & 602 \\
\hline & Hit prediction rate & 76.11\% \\
\hline & Flop prediction rate & 70.69\% \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{We improved our hit prediction rate, sacrificed a little on the flop prediction rate to achieve this - we think this is likely to be a trade off record companies may be willing to accept!}} \\
\hline & & \\
\hline
\end{tabular}

\section*{Second Approach - ROC Curve}


Since only \(15 \%\) of songs are billboord hits in the datoset, the dato was skewed and better predicted if songs were flops instead of hits. Therefore, we needed to find a better threshold probability that was lower than 0.5 to predict if a song will be a hit.

\section*{Second Approach - ROC Curve}

To find the point in the ROC curve that is closest to the perfect clossifier \((0,1)\), we colculated the specificicity ( \(x\)-axis) and sensitivity ( \(y\)-axis) using the confusion matrix volues. These numbers then allowed us to colculate the distonce from \((0,1)\).

Using Solver, we found the threshold probability that minimized the distance from the perfect classifier (subject to the constroint that the probability is less than or equal to 1 and greater
 than or equal to 0 ).

\section*{Using Solver - ROC Curve}

\begin{tabular}{|r|r|r|r|}
\hline & \multicolumn{2}{|c|}{ CONFUSION MATRIX } \\
\hline & \multicolumn{2}{|c|}{ Predicted } \\
\hline Actual & 0 & 0 & 1 \\
\hline & 1 & 3481 & 971 \\
\hline & Sensitivity & 259 & 532 \\
\hline & Specificity & 0.67256637 \\
\hline & & 0.78189578 \\
\hline & x axis on the ROC curve & 0.21810422 \\
\hline & y axis on the ROC curve & 0.67256637 \\
\hline & & \\
\hline & Distance from \((0,1)\) & 0.39342373 \\
\hline
\end{tabular}

\section*{Results - ROC Curve}

The new threshold probobility is \(0.178 \sim 0.18\), meaning that the model will classify the song as hit if it has a probability that is at or greater thon this number. With a lower threshold, the model can learn more about the true positive hit songs that were previously clossified as true negatives.

We tend to predict hits with obout 67.26\% accuracy and predict flops with about 78.19\% accuracy. While the flop prediction rate was lower than the first approach, our true aim was to bulld a model that would more accurately classify potential Billboord hits to inform decisions about morketing resource allocations and maximize profits off of these top songs.

\section*{Third Approach - Oversampled Data}

Since we know that the dataset is not properlly ballanced with the proportion of hits and fllops, another approach is to mnanually infilluence it.
- Builld a simnulated dataset where 50\% are hiits and 50\% are fillops
- Tolke 250 fillops
- Take 250 hiits
- Concatenate to beconne one dataset


\section*{Third Approach - Oversampled Data}


Applying a formula to mathematically correct the model

\section*{Third Approach - Oversampled Data}
```


Sample 250 hits

songs_biased_data <- songs_data[sample(which(songs_data\$Top10== 1), 250) ,]

Sample 250 flops

songs_biased_data2 <- songs_data[sample(which(songs_data\$Top10== 0) , 250),]

Concatenate the 2 dataframes

songs_biased_data <- rbind(songs_biased_data,songs_biased_data2)

```
```

model_glm <- glm(Top10 ~ timesignature_confidence + loudness + tempo_confidence +
energy + pitch + timbre_0_min + timbre_0_max + timbre_1_min + timbre_3_max +
timbre_4_min + timbre_4_max + timbre_5_min + timbre_6_min + timbre_6_max +
timbre_10_max + timbre_11_max + timbre_11_min, data = songs_train2, family = binomial(logit))
summary_glm <- summary(model_glm)

```
\[
\text { Offset }=\ln \left[\frac{\left(1-\text { purchase rate }_{\text {population }}\right) /\left(\text { purchase rate }_{\text {population }}\right)}{\left(1-\text { purchase rate }_{\text {sample }}\right) /\left(\text { purchase rate }_{\text {sample }}\right)}\right]
\]

Bias Corrected Intercept \(=\) Estimated Intercept - Offset

\section*{Results - Oversampled Data}
\begin{tabular}{|l|r|r|r|}
\hline & & \multicolumn{2}{|c|}{ Predicted } \\
\hline Actual & 0 & 0 & 1 \\
\hline & 1 & 245 & 5 \\
\hline & 191 & 59 \\
\hline Hit prediction rate & \(23.60 \%\) & \\
\hline Flop prediction rate & \(98.00 \%\) & \\
\hline & & \\
\hline Model does not offer significant improvements \\
over basecase.
\end{tabular}

\section*{Summary}

For each approach, we performed the analysis agoin with the test dato and everything measured up to the results of the training data analysis.

The ROC approach and modified Cost-Based approach yielded the most effective results of increasing lorgely the probability of hits prediction even if they sacrifice some prediction of the flops, which is a tradeoff we are willing to toke!

\section*{Application of Models and Marketing Effects}

\section*{New Product Development}
- Labels wiill know key metriics off top charting music
- Willl know whether it nnake sense to acquire/develop artist in dififferent genres

\section*{Predict Popularity/Sales}
- Labells willl be able to predict populariity off songs and salles
- Willl know what songs to norket

\section*{Artist Investments}
- Labels will be able to properly evaluate artist sales potential

\section*{Appendix \& Our Work}

Dataset: https:///www.kaggle.com/datasets/econdata/popularity-of-music-records
Code in R: https:///colab.research.google.com/drive/ils|RIdGpilmeOApcsg|6g4|_nKdwPc.jFlc?usp=sharing
Model(s) Analysis - Training Dataset of Cost-Based and ROC Approaches:
htttps://docs.google.com/spreadsheets/d/1MM4WowOgh=LkMs8Xzl|KBYPmYYh=
09a yl//edit?usp=sharing\&ovid=1115746272252023575668\&rtpof=true\&sd=true
Biosed (Oversampled) Data Analysis:
https://docs.google.com/spreadsheets/d//ihPn8ijr \(/\) JWWqFioG2PmheHMMjv4EFXDak/ledit?usp=sharingdouii \(\mathrm{d}=11574.62722520235756688\) rtpof \(=\) =trued.sd=true

Testing data Results:
https://docs.google.com/spreadsheets/d/11FM6gB7bvbbvOF68NíK GY=
gfl|PwGdYhTJ/edit?usp=sharing\&ouid=115746272252023575668\&rtpof=trued sod=true
Our Folder:
https://docs.google.com/spreadsheets/d/iFM6gB7bvbbvOF68NíK GY=
gfilPwGdYhTJ/edit?usp=sharing\&ovid=115746272252023575668\&rtpof=truedsd=true

\section*{Thonk You!}

Questions?```

