Top 10 Billboard Prediction Analysis

Anirudh Madhavan Jocelyn Jasso Michael Opiela Justin Ward Mia Nguyen

Challenge Statement

Our challenge: How can we reveal what tracks are most likely to be hits before we commit resources towards promoting them?

By remedying this problem, we can:

- Look at possible long-term and short-term investment for new artists
- Look at average and variance of music sales/popularity of songs and compare
- Open up new product development opportunities

Marketing Opportunity

	HO	100
	SONG	ARTIST
1	Anti-Hero	Taylor Swift
2	Lavender Haze	Taylor Swift
3	Maroon	Taylor Swift
4	Snow On The Beach	Taylor Swift ft. Lana Del Rey
5	Midnight Rain	Taylor Swift
6	Bejeweled	Taylor Swift
7	Question?	Taylor Swift
8	You're On Your Own, Kid	Taylor Swift
9	Karma	Taylor Swift
10	Vigilante Shit	Taylor Swift
		object dated Neuropher 5

billboard

We want to know which tracks will "blow up" so we can put our marketing resources behind the right ones and maximize our return. By getting a clearer understanding of possible costs & profits for labels looking to release new records, we can help them allocate their resources in the most profitmaximizing way given the information we have.

Dataset

Source: Kaggle

Contains more than **30 columns** with different song characteristics, such as tempo, estimatekey, timbre, and timesignature, including artistID and songID

We used "Top 10" binary column to showcase predicted popularity of each song

Key is to **determine probability of songs success** (more difficult), not probability of failure (easier)

Clean Data

Data was surprisingly completely clean, there were no NA values for any of the variables

vear songtitle artistname songTD	timbre_3_min	timbre_3_max	timbre_4_min	timbre_4_max
Min. :1990 Length:7574 Length:7574 Length:7574	Min. :-495.36	Min. : 12.85	Min. :-207.07	Min. : -0.651
1st Ou.:1997 Class :character Class :character Class :character	1st Qu.:-226.87	1st Qu.:127.14	1st Qu.: -77.69	1st Qu.: 83.966
Median :2002 Mode :character Mode :character Mode :character	Median :-170.61	Median :189.50	Median : -63.83	Median :107.422
Mean :2001	Mean :-186.11	Mean :211.81	Mean : -65.28	Mean :108.227
3rd Ou.: 2006	3rd Qu.:-131.56	3rd Qu.:290.72	3rd Qu.: -51.34	3rd Qu.:130.286
Max. :2010	Max. : -21.55	Max. :499.62	Max. : 51.43	Max. :257.801
artistID timesignature timesignature_confidence loudness	timbre 5 min	timbre 5 max	timbre 6 min	timbre 6 max
Length:7574 Min. :0.000 Min. :0.0000 Min. :-42.451	Min. :-262.48	Min. :-22.41	Min. :-152.170	Min. : 12.70
Class :character 1st Qu.:4.000 1st Qu.:0.8193 1st Qu.:-10.847	1st Ou.:-113.58	1st Ou.: 84.64	1st Ou.: -94.792	1st Ou.: 59.04
Mode :character Median :4.000 Median :0.9790 Median : -7.649	Median : -95.47	Median :119.90	Median : -80.418	Median : 70.47
Mean :3.894 Mean :0.8533 Mean : -8.817	Mean :-104.00	Mean :127.04	Mean : -80,944	Mean : 72.17
3rd Qu.:4.000 3rd Qu.:1.0000 3rd Qu.: -5.640	3rd Ou.: -81 02	3rd Ou. :162.34	3rd Ou.: -66.521	3rd Ou.: 83 19
Max. :7.000 Max. :1.0000 Max. : 1.305	Max : -42 17	Max :350 94	Max : 4 503	Max :208 39
tempo tempo_confidence key key_confidence	timbre 7 min	timbre 7 max	timbre 8 min	timbre 8 may
Min. : 0.00 Min. :0.0000 Min. : 0.000 Min. :0.0000	Min :-214 791	Min · 1E 70	Min -159 754	Min -25 OF
1st Qu.: 88.86 1st Qu.:0.3720 1st Qu.: 2.000 1st Qu.:0.2040	1at Ou + 101 171	1at Ou + 76 50	1at Out : 72 051	1at Ou + 40 59
Median :103.27 Median :0.7015 Median : 6.000 Median :0.4515	15t Qu.:-101.1/1	ISC QU.: 76.50	ISC QU.: -/3.051	ISC QU.: 40.58
Mean :107.35 Mean :0.6229 Mean : 5.385 Mean :0.4338	Median : -81./9/	Median : 94.63	Median : -62.661	Median : 49.22
3rd Qu.:124.80 3rd Qu.:0.8920 3rd Qu.: 9.000 3rd Qu.:0.6460	Mean : -84.313	Mean : 95.65	Mean : -63.704	Mean : 50.06
Max. :244.31 Max. :1.0000 Max. :11.000 Max. :1.0000	3rd Qu.: -64.301	3rd Qu.:112.71	3rd Qu.: -52.983	3rd Qu.: 58.46
energy pitch timbre_0_min timbre_0_max	Max. : 5.153	Max. :214.82	Max. : -2.382	Max. :144.99
Min. :0.00002 Min. :0.00000 Min. : 0.000 Min. :12.58	timbre_9_min	timbre_9_max	timbre_10_min	timbre_10_max
1st Qu.:0.50014 1st Qu.:0.00300 1st Qu.: 0.000 1st Qu.:53.12	Min. :-149.51	Min. : 8.415	Min. :-208.82	Min. : -6.359
Median :0.71816 Median :0.00700 Median : 0.027 Median :55.53	1st Qu.: -70.28	1st Qu.: 53.037	1st Qu.:-105.13	1st Qu.: 39.196
Mean :0.6/54/ Mean :0.01082 Mean : 4.123 Mean :54.46	Median : -58.65	Median : 65.935	Median : -83.07	Median : 50.895
3ra Qu.:0.88/40 3ra Qu.:0.01400 3ra Qu.: 2.772 3rd Qu.:57.08	Mean : -59.52	Mean : 68.028	Mean : -87.34	Mean : 55.521
Max. :0.99849 Max. :0.54100 Max. :48.353 Max. :64.01	3rd Ou.: -47.70	3rd Ou.: 81,267	3rd Ou.: -64.52	3rd Ou.: 66.593
timbre_i_min timbre_i_max timbre_2_min timbre_2_max	Max. : 1 14	Max. :161.518	Max. : -10 64	Max. :192 417
Min. :-333.72 Min. :-74.37 Min. :-324.86 Min. :-0.832	timbre 11 min	timbre 11 max	Top19	
Ist Qu.:-160.12 Ist Qu.:1/1.13 Ist Qu.:-16/.64 Ist Qu.:100.519	Min :-14E E00	Min · 7 20	Min :0 0000	
median :-107.75 median :194.40 Median :-136.60 Median :129.908	1at 00 - 58 058	1at 00 - 28 08	1at 00 10 0000	
mean :-110./9 mean :212.34 mean :-136.89 Mean :136.6/3	ISC QU.: -58.058	ISC QU.: 38.98	ISC QU.:0.0000	
5ra yu.: -59.71 5ra yu.:239.24 5ra yu.:-106.51 5ra yu.:166.121	median : -50.892	Median : 46.44	Median :0.0000	
Max. : 123./3 Max. :549.9/ Max. : 34.57 Max. :397.095	Mean : -50 868	Mean · 47 49	Mean :0 1477	

First Approach - Cost-Based

First, we evaluated that the data is unbalanced

- 6455 (~83% of the dataset) being songs that doesn't make it to the top 10 billboard
- 1119 (~17% of the dataset) being songs that become a Top 10 hit

table(songs_data\$Top10)
This is not a 'balanced' dataset - the probability of the 1 event (song
charting is significantly low in the dataset)
0 1
6455 1119

First Approach - Cost-Based

To provide more accurate model building and minimizing discrepancies:

- Split data into training and test data (70% and 30% roughly)
- Eliminating 5 columns that have qualitative data
- Running a regression and getting rid of variables that are statistically insignificant

First Approach - Cost-Based

model_glm <- glm(Top10 ~ timesignature_confidence + loudness + tempo_confidence +
energy + pitch + timbre_0_min + timbre_0_max + timbre_1_min + timbre_3_max +
timbre_4_min + timbre_4_max + timbre_5_min + timbre_6_min + timbre_6_max +
timbre_10_max + timbre_11_max + timbre_11_min, data = songs_train2, family = binomial(logit))
summary_glm <- summary(model_glm)</pre>

	A matrix: 34 × 4 of type dbl			
1	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.634801e+01	2.1261222004	7.68912063	1.481497e-14
timesignature	8.910904e-02	0.1006059061	0.88572371	3.757664e-01
timesignature_confide	ence 7.158259e-01	0.2194244529	3.26228843	1.105166e-03
loudness	3.062692e-01	0.0345066771	8.87565040	6.952591e-19
tempo	-6.239175e-04	0.0019405466	-0.32151639	7.478191e-01
tempo_confidence	5.824733e-01	0.1644896251	3.54109430	3.984711e-04
key	1.798239e-02	0.0120249120	1.49542764	1.348029e-01
key_confidence	3.034189e-01	0.1624953328	1.86724694	6.186711e-02
energy	-9.635887e-01	0.3634033427	-2.65156812	8.011895e-03
pitch	-4.408435e+01	7.7230397837	-5.70816100	1.142034e-08
timbre_0_min	2.541313e-02	0.0049090528	5.17678937	2.257368e-07

Half of the variables are eliminated

The remaining explanatory variables used on the logit regression model (in R) are:

- Time signature
- Loudness
- Tempo
- Energy
- Pitch
- Timbre min (0, 1, 4, 5, 6, 11)
- Timbre max (0, 3, 4, 6, 10, 11)

Results - Cost-Based

Not great... The accuracy of predicting flops are VERY high, but what we actually care about - **the hits** - is low

- 98% accuracy on the flops predictions
- Only 19% accuracy on hits predictions

	What	the	model	predicts
Actual va	lue FAL	SE TF	RUE	
	0 43	63	89	
	16	38 1	153	
0.980008984725966				
0.19342604	2983565			

Problems with First Approach

Since the dataset is imbalance to begin with, the naturally assume cutoff point of 0.5 backfired because we are weighing both outcomes equally. Because of that, the model leans towards classifying the songs as flops since that is the majority of the data presented in the set.

However, we care about the hits infinitely MORE! Let's see if we can remedy this issue

First Approach - Cost-Based (modified)

Knowing the issue, we decided to find the optimized cutoff point:

Penalizing False Negative a lot more and False Positive a lot less

False Negative 6x as much as False Positive Using R, we defined a cost metric, an index sequence, and utilizing coding power, sorted through every probability (by 0.01 threshold) to find a place where the cost is minimized

How the Magic Happens - Cost-Based

```
cost_function = function(what_happened , model_probability , cutoff_probability)
{
  weight_1 = 6 # Define the cost multiple associated with true = 1, but prediction = 0 (FN - penalize the False Negative a lot more)
  weight_2 = 1 # Define the cost multiple associated with true = 0, but prediction = 1 (FP - penalize the False Positive a lot less)
  c1 = (what_happened == 1) & (model_probability < cutoff_probability) # Counting up False Negatives
  c0 = (what_happened == 0) & (model_probability > cutoff_probability) # Counting up False Positives
  # Define a cost metric using weighted averages
  cost = mean(weight_1 * c1 + weight_2 * c0)
  return(cost)
}
```

Going through every probability to find the best cut - off

p.seq = seq(from = 0.01, to = 1, by = 0.01)

```
# Looping through in order to find the p - cut that can lower the cost function
# to the maximum extent possible
cost = rep(0,length(p.seq))
for(i in 1 : length(p.seq)){
    cost[i] = cost_function(what_happened = songs_train2$Top10 , model_probability = songs_train2$prediction , cutoff_probability = p.seq[i])
}
```

Results - Cost-Based (modified)

The minimized cutoff point is 0.14

Results Improved significantly!

Cutoff probability	0.14			
. ,	CONFUSION MATRIX			
	Predicted			
Actual	0	1		
0	3147	1305		
1	189	602		
	Hit prediction rate	76.11%		
	Flop prediction rate	70.69%		
	We improved ou sacrificed a little on to achieve this - we trade off record con to a	We improved our hit prediction rate, crificed a little on the flop prediction rate achieve this - we think this is likely to be a ade off record companies may be willing to accept!		

Second Approach - ROC Curve

Since only 15% of songs are billboard hits in the dataset, the data was skewed and better predicted if songs were flops instead of hits. Therefore, we needed to find a better threshold probability that was lower than 0.5 to predict if a song will be a hit.

Second Approach - ROC Curve

To find the point in the ROC curve that is closest to the perfect classifier (0,1), we calculated the **specificity (x-axis) and sensitivity (y-axis)** using the confusion matrix values. These numbers then allowed us to calculate the distance from (0,1).

Using Solver, we found the threshold probability that **minimized the distance from the perfect classifier** (subject to the constraint that the probability is less than or equal to 1 and greater than or equal to 0).

Using Solver - ROC Curve

X

Se <u>t</u> Objective:		\$AR\$15		
To: <u>M</u> ax	O Mi <u>n</u>	◯ <u>V</u> alue Of:	0	
By Changing Variab	le Cells:			
\$AQ\$1				
S <u>u</u> bject to the Const	traints:			
\$AQ\$1 <= 1 \$AQ\$1 >= 0			A	Add
				<u>C</u> hange
				Delete
				<u>R</u> eset All
			*	Load/Save
<mark> Ma<u>k</u>e Unconstra</mark>	ained Variables Non-Ne	egative		
Select a Solving	GRG Nonlinear		~	Options
Method:				
Solving Method				
Select the GRG No for linear Solver P	nlinear engine for Solv roblems, and select the	er Problems that are sm Evolutionary engine for	ooth nonlinear. Select t Solver problems that a	he LP Simplex engine re non-smooth.
		-	and a second	1

	CONFUSION MATRIX		
	Predicted		
Actual	0	1	
0	3481	971	
1	259	532	
	Sensitivity	0.67256637	
	Specificity	0.78189578	
	x axis on the ROC curve	0.21810422	
	y axis on the ROC curve	0.67256637	
	Distance from (0,1)	0.39342373	

Results - ROC Curve

The new threshold probability is 0.178 ~ 0.18, meaning that the model will classify the song as hit if it has a probability that is at or greater than this number. With a lower threshold, the model can learn more about the true positive hit songs that were previously classified as true negatives. We tend to predict hits with about 67.26% accuracy and predict flops with about 78.19% accuracy. While the flop prediction rate was lower than the first approach, our true aim was to build a model that would more accurately classify potential Billboard hits to inform decisions about marketing resource allocations and maximize profits off of these top songs.

Hit Prediction Rate	67.26%
Flop Prediction Rate	78.19%

Third Approach - Oversampled Data

Since we know that the dataset is not properly balanced with the proportion of hits and flops, another approach is to manually influence it.

- Build a simulated dataset where 50% are hits and 50% are flops
 - Take 250 flops
 - o Take 250 hits
 - Concatenate to become one dataset

250 flops	250 hits
20%	20%

Third Approach - Oversampled Data

Using only statistically significant variables

 End up with 9 total explanatory variables after stripping insignificant variables Run a regression on the newly created dataset

Applying a formula to mathematically correct the model

Third Approach - Oversampled Data

Sample 250 hits

songs_biased_data <- songs_data[sample(which(songs_data\$Top10 == 1) , 250) ,]</pre>

Sample 250 flops

songs_biased_data2 <- songs_data[sample(which(songs_data\$Top10 == 0) , 250),]</pre>

Concatenate the 2 dataframes

songs_biased_data <- rbind(songs_biased_data,songs_biased_data2)</pre>

model_glm <- glm(Top10 ~ timesignature_confidence + loudness + tempo_confidence +
energy + pitch + timbre_0_min + timbre_0_max + timbre_1_min + timbre_3_max +
timbre_4_min + timbre_4_max + timbre_5_min + timbre_6_min + timbre_6_max +
timbre_10_max + timbre_11_max + timbre_11_min, data = songs_train2, family = binomial(logit))
summary_glm <- summary(model_glm)</pre>

$$Offset = \ln \left[\frac{\left(1 - purchase \, rate_{population}\right) / \left(purchase \, rate_{population}\right)}{\left(1 - purchase \, rate_{sample}\right) / \left(purchase \, rate_{sample}\right)} \right]$$

Bias Corrected Intercept = Estimated Intercept – Offset

Results - Oversampled Data

	Predicted			
Actual	0	1		
0	245	5		
1	191	59		
Hit prediction rate	23.60%			
Flop prediction rate	98.00%			
Model does not offer significant improvements				

over basecase.

Summary

For each approach, we **performed the analysis again with the test data** and everything measured up to the results of the training data analysis.

The **ROC approach** and **modified Cost-Based** approach yielded the most effective results of increasing largely the probability of hits prediction even if they sacrifice some prediction of the flops, which is a tradeoff we are willing to take!

Application of Models and Marketing Effects

New Product Development

- Labels will know key metrics of top charting music
- Will know whether it make sense to acquire/develop artist in different genres

Predict Popularity/Sales

- Labels will be able to predict popularity of songs and sales
- Will know what songs to market

Artist Investments

• Labels will be able to properly evaluate artist sales potential

Appendix & Our Work

Dataset: https://www.kaggle.com/datasets/econdata/popularity-of-music-records

Code in R: https://colab.research.google.com/drive/1slRldGp1me0Apcsgl6g4I_nKdwPcjFlc?usp=sharing

Model(s) Analysis - Training Dataset of Cost-Based and ROC Approaches: <u>https://docs.google.com/spreadsheets/d/1M4WowOgh-LkMs8XzlKBYPmYYh-</u>09a_yl/edit?usp=sharing&ouid=115746272252023575668&rtpof=true&sd=true

Biased (Oversampled) Data Analysis: https://docs.google.com/spreadsheets/d/1hPn8jrrJxWqFjoG2PmheHMpjv4EFXDak/edit?usp=sharing&oui d=115746272252023575668&rtpof=true&sd=true

Testing data Results: https://docs.google.com/spreadsheets/d/1FM6gB7bvbbvOF68NfKGYgflPwGdYhTJ/edit?usp=sharing&ouid=115746272252023575668&rtpof=true&sd=true

Our Folder:

https://docs.google.com/spreadsheets/d/1FM6gB7bvbbvOF68NfKGYgflPwGdYhTJ/edit?usp=sharing&ouid=115746272252023575668&rtpof=true&sd=true

Thank You!

